Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 312: 111036, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34620440

RESUMO

Like in mammals, the plant immune system has evolved to perceive damage. Damaged-associated molecular patterns (DAMPs) are endogenous signals generated in wounded or infected tissue after pathogen or insect attack. Although extracellular DNA (eDNA) is a DAMP signal that induces immune responses, plant responses after eDNA perception remain largely unknown. Here, we report that signaling defenses but not direct defense responses are induced after eDNA applications enhancing broad-range plant protection. A screening of defense signaling and hormone biosynthesis marker genes revealed that OXI1, CML37 and MPK3 are relevant eDNA-Induced Resistance markers (eDNA-IR). Additionally, we observed that eDNA from several Arabidopsis ecotypes and other phylogenetically distant plants such as citrus, bean and, more surprisingly, a monocotyledonous plant such as maize upregulates eDNA-IR marker genes. Using 3,3'-Diaminobenzidine (DAB) and aniline blue staining methods, we observed that H2O2 but not callose was strongly accumulated following self-eDNA treatments. Finally, eDNA resulted in effective induced resistance in Arabidopsis against the pathogens Hyaloperonospora arabidopsidis, Pseudomonas syringae, and Botrytis cinerea and against aphid infestation, reducing the number of nymphs and moving forms. Hence, the unspecificity of DNA origin and the wide range of insects to which eDNA can protect opens many questions about the mechanisms behind eDNA-IR.


Assuntos
Arabidopsis/genética , DNA/farmacologia , Resistência à Doença/genética , Resistência à Doença/imunologia , Imunidade Vegetal/genética , Transdução de Sinais/genética , Zea mays/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Brassica/genética , Brassica/imunologia , Brassica/microbiologia , Citrus/genética , Citrus/imunologia , Citrus/microbiologia , Produtos Agrícolas/genética , Produtos Agrícolas/imunologia , Produtos Agrícolas/microbiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Phaseolus/genética , Phaseolus/imunologia , Phaseolus/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Solanum/genética , Solanum/imunologia , Solanum/microbiologia , Spinacia oleracea/genética , Spinacia oleracea/imunologia , Spinacia oleracea/microbiologia , Zea mays/imunologia , Zea mays/microbiologia
2.
Genes (Basel) ; 11(7)2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630103

RESUMO

Wild potato species continue to be a rich source of genes for resistance to late blight in potato breeding. Whilst many dominant resistance genes from such sources have been characterised and used in breeding, quantitative resistance also offers potential for breeding when the loci underlying the resistance can be identified and tagged using molecular markers. In this study, F1 populations were created from crosses between blight susceptible parents and lines exhibiting strong partial resistance to late blight derived from the South American wild species Solanum microdontum and Solanum pampasense. Both populations exhibited continuous variation for resistance to late blight over multiple field-testing seasons. High density genetic maps were created using single nucleotide polymorphism (SNP) markers, enabling mapping of quantitative trait loci (QTLs) for late blight resistance that were consistently expressed over multiple years in both populations. In the population created with the S. microdontum source, QTLs for resistance consistently expressed over three years and explaining a large portion (21-47%) of the phenotypic variation were found on chromosomes 5 and 6, and a further resistance QTL on chromosome 10, apparently related to foliar development, was discovered in 2016 only. In the population created with the S. pampasense source, QTLs for resistance were found in over two years on chromosomes 11 and 12. For all loci detected consistently across years, the QTLs span known R gene clusters and so they likely represent novel late blight resistance genes. Simple genetic models following the effect of the presence or absence of SNPs associated with consistently effective loci in both populations demonstrated that marker assisted selection (MAS) strategies to introgress and pyramid these loci have potential in resistance breeding strategies.


Assuntos
Resistência à Doença , Locos de Características Quantitativas , Solanum/genética , Cromossomos de Plantas/genética , Phytophthora/patogenicidade , Melhoramento Vegetal/métodos , Polimorfismo de Nucleotídeo Único , Solanum/imunologia , Solanum/microbiologia
3.
BMC Genomics ; 21(1): 250, 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32293256

RESUMO

BACKGROUND: The Mi-1 gene was the first identified and cloned gene that provides resistance to root-knot nematodes (RKNs) in cultivated tomato. However, owing to its temperature sensitivity, this gene does not meet the need for breeding disease-resistant plants that grow under high temperature. In this study, Mi-3 was isolated from the wild species PI 126443 (LA3858) and was shown to display heat-stable resistance to RKNs. However, the mechanism that regulates this resistance remains unknown. RESULTS: In this study, 4760, 1024 and 137 differentially expressed genes (DEGs) were enriched on the basis of pairwise comparisons (34 °C vs. 25 °C) at 0 (before inoculation), 3 and 6 days post-inoculation (dpi), respectively. A total of 7035 DEGs were identified from line LA3858 in the respective groups under the different soil temperature treatments. At 3 dpi, most DEGs were enriched in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to plant biotic responses, such as "plant-pathogen interaction" and "plant hormone signal transduction". Significantly enriched DEGs were found to encode key proteins such as R proteins and heat-shock proteins (HSPs). Moreover, other DEGs were found to participate in Ca2+ signal transduction; the production of ROS; DEGs encoding transcription factors (TFs) from the bHLH, TGA, ERF, heat-shock transcription factor (HSF) and WRKY families were highly expressed, which contribute to be involved into the formation of phytohormones, such as salicylic acid (SA), jasmonic acid (JA) and ethylene (ET), the expression of most was upregulated at 3 dpi at the 25 °C soil temperature compared with the 34 °C soil temperature. CONCLUSION: Taken together, the results of our study revealed reliable candidate genes from wild materials LA3858, that are related to Mi-3-mediate resistance to Meloidogyne incognita. A large number of vital pathways and DEGs were expressed specifically in accession LA3858 grown at 34 °C and 25 °C soil temperatures at 3 dpi. Upon infection by RKNs, pattern-recognition receptors (PRRs) specifically recognized conserved pathogen-associated molecular patterns (PAMPs) as a result of pathogen-triggered immunity (PTI), and the downstream defensive signal transduction pathway was likely activated through Ca2+ signal channels. The expression of various TFs was induced to synthesize phytohormones and activate R proteins related to resistance, resulting in the development of effector-triggered immunity (ETI). Last, a hypersensitive response in the roots occurred, which was probably induced by the accumulation of ROS.


Assuntos
Resistência à Doença/genética , Interações Hospedeiro-Parasita/genética , Proteínas de Plantas/metabolismo , Solanum/genética , Solanum/metabolismo , Animais , Cálcio/metabolismo , Ciclopentanos/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , RNA-Seq , Espécies Reativas de Oxigênio , Ácido Salicílico/metabolismo , Transdução de Sinais/genética , Solanum/imunologia , Solanum/parasitologia , Temperatura , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Tylenchoidea/patogenicidade
4.
Sci Rep ; 8(1): 17092, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30459319

RESUMO

Prickles are epidermal outgrowth found on the aerial surface of several terrestrial plants. Microscopic studies on prickles of S. viarum Dunal indicated a crucial role of glandular trichomes (GTs) in their development. A spontaneously obtained prickleless mutant showed normal epidermal GTs, but its downstream developmental process to prickle was perturbed. Thus, prickleless mutant offers an ideal opportunity to unveil molecular regulators working downstream to GTs in the prickle formation. Differential transcriptome analysis of epidermis of prickly and prickleless mutant revealed that expression of several defense regulators like ethylene, salicylic acid, PR-proteins, etc. were significantly down-regulated in prickleless mutant, provide an important link between defense and prickle development. It was also noteworthy that the expression of few essential development related TFs like MADS-box, R2R3-MYB, REM, DRL1, were also down-regulated in the stem, petioles, and leaves of prickleless mutant indicating their potential role in prickle development. Interestingly, the gene expression of terpenoid, steroid, flavonoid, glucosinolate, and lignin biosynthesis pathways were up-regulated in prickleless mutant. The biochemical and qRT-PCR analysis also confirmed metabolite elevation. These results indicated that the loss of prickle was compensated by elevated secondary metabolism in the prickleless mutant which played important role in the biotic and abiotic stress management.


Assuntos
Mutação , Proteínas de Plantas/genética , Solanum/genética , Estresse Fisiológico , Transcriptoma , Tricomas/crescimento & desenvolvimento , Tricomas/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes e Vias Metabólicas , Polimorfismo de Nucleotídeo Único , Solanum/crescimento & desenvolvimento , Solanum/imunologia , Tricomas/genética
5.
PLoS One ; 13(11): e0207253, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30412603

RESUMO

Plant immunity has mainly been studied under controlled conditions, limiting our knowledge regarding the regulation of immunity under natural conditions where plants grow in association with multiple microorganisms. Plant pathology theory, based on laboratory data, predicts complex biochemical plant-pathogen interactions leading to coevolution of pathogen infectivity vs. plant recognition of microbes in multiple layers over time. However, plant immunity is currently not evaluated in relation to ecological time-scales and field conditions. Here we report status of immunity in plants without visible disease symptoms in wild populations of nightshades, Solanum dulcamara and Solanum nigrum, and in agricultural fields of potato, Solanum tuberosum. We analysed presence of pathogenesis-related proteins in over 500 asymptomatic leaf samples collected in the field in June, July and August over three years. Pathogenesis-related proteins were present in only one-third of the collected samples, suggesting low activity of the immune system. We could also detect an increase in pathogenesis-related proteins later in the growing season, particularly in S. tuberosum. Our findings, based on pathogenesis-related protein markers, indicate major gaps in our knowledge regarding the status and regulation of plant immunity under field conditions.


Assuntos
Imunidade Vegetal , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Solanum/imunologia , Solanum/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/imunologia , Produtos Agrícolas/metabolismo , Imunidade Vegetal/genética , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Análise de Sequência de RNA , Solanum/genética , Solanum nigrum/genética , Solanum nigrum/imunologia , Solanum nigrum/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/imunologia , Solanum tuberosum/metabolismo , Suécia
6.
Plant Mol Biol ; 95(4-5): 411-423, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28980117

RESUMO

KEY MESSAGE: Exploration with high throughput leaf metabolomics along with functional genomics in wild tomato unreveal potential role of steroidal glyco-alkaloids and phenylpropanoids during early blight resistance. Alternaria solani severely affects tomato (Solanum lycopersicum L.) yield causing early blight (EB) disease in tropical environment. Wild relative, Solanum arcanum Peralta could be a potential source of EB resistance; however, its underlying molecular mechanism largely remains unexplored. Hence, non-targeted metabolomics was applied on resistant and susceptible S. arcanum accessions upon A. solani inoculation to unravel metabolic dynamics during different stages of disease progression. Total 2047 potential metabolite peaks (mass signals) were detected of which 681 and 684 metabolites revealed significant modulation and clear differentiation in resistant and susceptible accessions, respectively. Majority of the EB-triggered metabolic changes were active from steroidal glycol-alkaloid (SGA), lignin and flavonoid biosynthetic pathways. Further, biochemical and gene expression analyses of key enzymes from these pathways positively correlated with phenotypic variation in the S. arcanum accessions indicating their potential role in EB. Additionally, transcription factors regulating lignin biosynthesis were also up-regulated in resistant plants and electrophoretic mobility shift assay revealed sequence-specific binding of rSaWRKY1 with MYB20 promoter. Moreover, transcript accumulation of key genes from phenylpropanoid and SGA pathways along with WRKY and MYB in WRKY1 transgenic tomato lines supported above findings. Overall, this study highlights vital roles of SGAs as phytoalexins and phenylpropanoids along with lignin accumulation unrevealing possible mechanistic basis of EB resistance in wild tomato.


Assuntos
Alcaloides/metabolismo , Alternaria/fisiologia , Regulação da Expressão Gênica de Plantas , Metabolômica , Doenças das Plantas/imunologia , Solanum/metabolismo , Alcaloides/química , Vias Biossintéticas , Resistência à Doença , Flavonoides/metabolismo , Glicóis/química , Glicóis/metabolismo , Lignina/metabolismo , Fenótipo , Fitosteróis/química , Fitosteróis/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Saponinas/metabolismo , Metabolismo Secundário , Solanum/genética , Solanum/imunologia , Solanum/microbiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Ann Bot ; 119(5): 829-840, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27660055

RESUMO

Background and Aims: Current strategies for increased crop protection of susceptible tomato plants against pathogen infections include treatment with synthetic chemicals, application of natural pathogen-derived compounds or transfer of resistance genes from wild tomato species within breeding programmes. In this study, a series of 45 genes potentially involved in defence mechanisms was retrieved from the genome sequence of inbred reference tomato cultivar Solanum lycopersicum 'Heinz 1706'. The aim of the study was to analyse expression of these selected genes in wild and cultivated tomato plants contrasting in resistance to the biotrophic pathogen Oidium neolycopersici , the causative agent of powdery mildew. Plants were treated either solely with potential resistance inducers or by inducers together with the pathogen. Methods: The resistance against O. neolycopersici infection as well as RT-PCR-based analysis of gene expression in response to the oomycete elicitor oligandrin and chemical agent ß-aminobutyric acid (BABA) were investigated in the highly susceptible domesticated inbred genotype Solanum lycopersicum 'Amateur' and resistant wild genotype Solanum habrochaites . Key Results: Differences in basal expression levels of defensins, germins, ß-1,3-glucanases, heveins, chitinases, osmotins and PR1 proteins in non-infected and non-elicited plants were observed between the highly resistant and susceptible genotypes. Moreover, these defence genes showed an extensive up-regulation following O. neolycopersici infection in both genotypes. Application of BABA and elicitin induced expression of multiple defence-related transcripts and, through different mechanisms, enhanced resistance against powdery mildew in the susceptible tomato genotype. Conclusions: The results indicate that non-specific resistance in the resistant genotype S. habrochaites resulted from high basal levels of transcripts with proven roles in defence processes. In the susceptible genotype S. lycopersicum 'Amateur', oligandrin- and BABA-induced resistance involved different signalling pathways, with BABA-treated leaves displaying direct activation of the ethylene-dependent signalling pathway, in contrast to previously reported jasmonic acid-mediated signalling for elicitins.


Assuntos
Aminobutiratos/farmacologia , Ascomicetos/fisiologia , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Sesquiterpenos/farmacologia , Solanum lycopersicum/genética , Solanum/genética , Resistência à Doença , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Solanum/imunologia , Solanum/microbiologia , Regulação para Cima
8.
Genet Mol Res ; 15(1)2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27050983

RESUMO

Several studies have been conducted on resistance sources to improve the genetic resistance of farm-grown tomatoes to arthropod pests, including phytophagous mites. In the present study, we evaluate the behavior of the two-spotted spider mite on different cherry tomato accessions to identify possible sources of resistance (repellent effect) to this pest. Sixty-four accessions of cherry tomatoes, Solanum lycopersicum var. cerasiforme (Dunal), were tested. In addition, a commercial cultivar of cherry tomato cv. Sweet Grape (susceptible pattern) and the wild tomato accession Solanum pennellii Correll LA-716 (multiple pest resistance) were evaluated as well. The distance traveled by mites on the leaflet surface over time varied largely among cherry tomato accessions. The wild genotype, S. pennellii LA-716, showed the smallest traveled distance on the leaflet surface (0.8 to 1.1 mm over time), and the variety cv. Sweet Grape was one of the genotypes with highest traveled distance (16.2 to 16.4 mm over time). The cherry tomato accessions 2298-42, RVTC-03, and 6889-53 showed a decrease in the traveled distance by mites over time, similar to that as observed in the wild tomato accession LA716. These accessions showed mite repellence levels similar to those of the wild genotype and may, therefore, be good candidates for breeding programs dealing with resistance to mites.


Assuntos
Resistência à Doença/genética , Interações Hospedeiro-Parasita , Solanum/genética , Animais , Genótipo , Solanum/imunologia , Solanum/parasitologia , Tetranychidae/patogenicidade
9.
Funct Integr Genomics ; 15(6): 697-706, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26077032

RESUMO

RNA interference (RNAi) has proved a powerful genetic tool for silencing genes in plants. Host-induced gene silencing of pathogen genes has provided a gene knockout strategy for a wide range of biotechnological applications. The RXLR effector Avr3a gene is largely responsible for virulence of oomycete plant pathogen Phytophthora infestans. In this study, we attempted to silence the Avr3a gene of P. infestans through RNAi technology. The P. infestans inoculation resulted in lower disease progression and a reduction in pathogen load, as demonstrated by disease scoring and quantification of pathogen biomass in terms of Pi08 repetitive elements, respectively. Transgenic plants induced moderate silencing of Avr3a, and the presence and/or expression of small interfering RNAs, as determined through Northern hybridization, indicated siRNA targeted against Avr3a conferred moderate resistance to P. infestans. The single effector gene did not provide complete resistance against P. infestans. Although the Avr3a effector gene could confer moderate resistance, for complete resistance, the cumulative effect of effector genes in addition to Avr3a needs to be considered. In this study, we demonstrated that host-induced RNAi is an effective strategy for functional genomics in oomycetes.


Assuntos
Resistência à Doença/genética , Inativação Gênica , Interações Hospedeiro-Patógeno , Phytophthora infestans/genética , Solanum/imunologia , Fatores de Virulência/genética , Phytophthora infestans/patogenicidade , Solanum/genética , Solanum/microbiologia
10.
PLoS One ; 10(4): e0122599, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25923711

RESUMO

Crop wild relatives have a long history of use in potato breeding, particularly for pest and disease resistance, and are expected to be increasingly used in the search for tolerance to biotic and abiotic stresses. Their current and future use in crop improvement depends on their availability in ex situ germplasm collections. As these plants are impacted in the wild by habitat destruction and climate change, actions to ensure their conservation ex situ become ever more urgent. We analyzed the state of ex situ conservation of 73 of the closest wild relatives of potato (Solanum section Petota) with the aim of establishing priorities for further collecting to fill important gaps in germplasm collections. A total of 32 species (43.8%), were assigned high priority for further collecting due to severe gaps in their ex situ collections. Such gaps are most pronounced in the geographic center of diversity of the wild relatives in Peru. A total of 20 and 18 species were assessed as medium and low priority for further collecting, respectively, with only three species determined to be sufficiently represented currently. Priorities for further collecting include: (i) species completely lacking representation in germplasm collections; (ii) other high priority taxa, with geographic emphasis on the center of species diversity; (iii) medium priority species. Such collecting efforts combined with further emphasis on improving ex situ conservation technologies and methods, performing genotypic and phenotypic characterization of wild relative diversity, monitoring wild populations in situ, and making conserved wild relatives and their associated data accessible to the global research community, represent key steps in ensuring the long-term availability of the wild genetic resources of this important crop.


Assuntos
Produtos Agrícolas/fisiologia , Melhoramento Vegetal , Banco de Sementes , Solanum/fisiologia , Mudança Climática , Conservação dos Recursos Naturais , Produtos Agrícolas/genética , Produtos Agrícolas/imunologia , Resistência à Doença , Ecossistema , Genótipo , Peru , Solanum/genética , Solanum/imunologia
11.
Phytopathology ; 105(9): 1198-205, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25871860

RESUMO

Potato late blight, caused by the oomycete phytopathogen Phytophthora infestans, is a devastating disease found in potato-growing regions worldwide. Long-term management strategies to control late blight include the incorporation of host resistance to predominant strains. However, due to rapid genetic changes within pathogen populations, rapid and recurring identification and integration of novel host resistance traits is necessary. Wild relatives of potato offer a rich source of desirable traits, including late blight resistance, but screening methods can be time intensive. We tested the ability of taxonomy, ploidy, crossing group, breeding system, and geography to predict the presence of foliar and tuber late blight resistance in wild Solanum spp. Significant variation for resistance to both tuber and foliar late blight was found within and among species but there was no discernable predictive power based on taxonomic series, clade, ploidy, breeding system, elevation, or geographic location. We observed a moderate but significant correlation between tuber and foliar resistance within species. Although previously uncharacterized sources of both foliar and tuber resistance were identified, our study does not support an assumption that taxonomic or geographic data can be used to predict sources of late blight resistance in wild Solanum spp.


Assuntos
Resistência à Doença , Phytophthora/fisiologia , Doenças das Plantas/imunologia , Folhas de Planta/imunologia , Tubérculos/imunologia , Solanum/imunologia , Cruzamento , Geografia , Doenças das Plantas/microbiologia , Folhas de Planta/classificação , Folhas de Planta/genética , Tubérculos/classificação , Tubérculos/genética , Plastídeos/genética , Ploidias , Solanum/classificação , Solanum/genética , Solanum tuberosum/classificação , Solanum tuberosum/genética , Solanum tuberosum/imunologia , Especificidade da Espécie
12.
BMC Genomics ; 15: 1152, 2014 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-25526885

RESUMO

BACKGROUND: A RIL population between Solanum lycopersicum cv. Moneymaker and S. pimpinellifolium G1.1554 was genotyped with a custom made SNP array. Additionally, a subset of the lines was genotyped by sequencing (GBS). RESULTS: A total of 1974 polymorphic SNPs were selected to develop a linkage map of 715 unique genetic loci. We generated plots for visualizing the recombination patterns of the population relating physical and genetic positions along the genome.This linkage map was used to identify two QTLs for TYLCV resistance which contained favourable alleles derived from S. pimpinellifolium. Further GBS was used to saturate regions of interest, and the mapping resolution of the two QTLs was improved. The analysis showed highest significance on Chromosome 11 close to the region of 51.3 Mb (qTy-p11) and another on Chromosome 3 near 46.5 Mb (qTy-p3). Furthermore, we explored the population using untargeted metabolic profiling, and the most significant differences between susceptible and resistant plants were mainly associated with sucrose and flavonoid glycosides. CONCLUSIONS: The SNP information obtained from an array allowed a first QTL screening of our RIL population. With additional SNP data of a RILs subset, obtained through GBS, we were able to perform an in silico mapping improvement to further confirm regions associated with our trait of interest. With the combination of different ~ omics platforms we provide valuable insight into the genetics of S. pimpinellifolium-derived TYLCV resistance.


Assuntos
Mapeamento Cromossômico , Resistência à Doença/genética , Técnicas de Genotipagem , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Solanum/genética , Solanum/virologia , Alelos , Simulação por Computador , Genoma de Planta/genética , Endogamia , Metaboloma , Doenças das Plantas/imunologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Análise de Sequência , Solanum/imunologia , Solanum/metabolismo
13.
BMC Plant Biol ; 14: 287, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25348801

RESUMO

BACKGROUND: Decades of intensive tomato breeding using wild-species germplasm have resulted in the genomes of domesticated germplasm (Solanum lycopersicum) being intertwined with introgressions from their wild relatives. Comparative analysis of genomes among cultivated tomatoes and wild species that have contributed genetic variation can help identify desirable genes, such as those conferring disease resistance. The ability to identify introgression position, borders, and contents can reveal ancestral origins and facilitate harnessing of wild variation in crop breeding. RESULTS: Here we present the whole-genome sequences of two tomato inbreds, Gh13 and BTI-87, both carrying the begomovirus resistance locus Ty-3 introgressed from wild tomato species. Introgressions of different sizes on chromosome 6 of Gh13 and BTI-87, both corresponding to the Ty-3 region, were identified as from a source close to the wild species S. chilense. Other introgressions were identified throughout the genomes of the inbreds and showed major differences in the breeding pedigrees of the two lines. Interestingly, additional large introgressions from the close tomato relative S. pimpinellifolium were identified in both lines. Some of the polymorphic regions were attributed to introgressions in the reference Heinz 1706 genome, indicating wild genome sequences in the reference tomato genome. CONCLUSIONS: The methods developed in this work can be used to delineate genome introgressions, and subsequently contribute to development of molecular markers to aid phenotypic selection, fine mapping and discovery of candidate genes for important phenotypes, and for identification of novel variation for tomato improvement. These universal methods can easily be applied to other crop plants.


Assuntos
Begomovirus/genética , Variação Genética , Genoma de Planta/genética , Solanum lycopersicum/genética , Solanum/genética , Sequência de Bases , Mapeamento Cromossômico , Resistência à Doença , Genótipo , Endogamia , Solanum lycopersicum/imunologia , Solanum lycopersicum/virologia , Dados de Sequência Molecular , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Solanum/imunologia , Solanum/virologia
14.
BMC Genomics ; 15: 412, 2014 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-24885385

RESUMO

BACKGROUND: Eggplant (Solanum melongena L.) and turkey berry (S. torvum Sw.), a wild ally of eggplant with promising multi-disease resistance traits, are of great economic, medicinal and genetic importance, but genomic resources for these species are lacking. In the present study, we sequenced the transcriptomes of eggplant and turkey berry to accelerate research on these two non-model species. RESULTS: We built comprehensive, high-quality de novo transcriptome assemblies of the two Leptostemonum clade Solanum species from short-read RNA-Sequencing data. We obtained 34,174 unigenes for eggplant and 38,185 unigenes for turkey berry. Functional annotations based on sequence similarity to known plant datasets revealed a distribution of functional categories for both species very similar to that of tomato. Comparison of eggplant, turkey berry and another 11 plant proteomes resulted in 276 high-confidence single-copy orthologous groups, reasonable phylogenetic tree inferences and reliable divergence time estimations. From these data, it appears that eggplant and its wild Leptostemonum clade relative turkey berry split from each other in the late Miocene, ~6.66 million years ago, and that Leptostemonum split from the Potatoe clade in the middle Miocene, ~15.75 million years ago. Furthermore, 621 and 815 plant resistance genes were identified in eggplant and turkey berry respectively, indicating the variation of disease resistance genes between them. CONCLUSIONS: This study provides a comprehensive transcriptome resource for two Leptostemonum clade Solanum species and insight into their evolutionary history and biological characteristics. These resources establish a foundation for further investigations of eggplant biology and for agricultural improvement of this important vegetable. More generally, we show that RNA-Seq is a fast, reliable and cost-effective method for assessing genome evolution in non-model species.


Assuntos
Resistência à Doença , Solanum/genética , Solanum/imunologia , Sequência de Bases , Evolução Molecular , Genoma de Planta , Genômica , Anotação de Sequência Molecular , Dados de Sequência Molecular , Filogenia , Análise de Sequência de RNA , Solanum/classificação , Transcriptoma
15.
Mol Plant Pathol ; 15(3): 297-303, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24745046

RESUMO

Ralstonia solanacearum is a Gram-negative soil-borne bacterium that causes bacterial wilt disease in more than 200 plant species, including economically important Solanaceae species. In R. solanacearum, the hypersensitive response and pathogenicity (Hrp) type III secretion system is required for both the ability to induce the hypersensitive response (HR) in nonhost plants and pathogenicity in host plants. Recently, 72 effector genes, called rip (Ralstonia protein injected into plant cells), have been identified in R. solanacearum RS1000. RS1002, a spontaneous nalixidic acid-resistant derivative of RS1000, induced strong HR in the nonhost wild eggplant Solanum torvum in an Hrp-dependent manner. An Agrobacterium-mediated transient expression system revealed that Rip36, a putative Zn-dependent protease effector of R. solanacearum, induced HR in S. torvum. A mutation in the putative Zn-binding motif (E149A) completely abolished the ability to induce HR. In agreement with this result, the RS1002-derived Δrip36 and rip36E149A mutants lost the ability to induce HR in S. torvum. An E149A mutation had no effect on the translocation of Rip36 into plant cells. These results indicate that Rip36 is an avirulent factor that induces HR in S. torvum and that a putative Zn-dependent protease motif is essential for this activity.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Ralstonia solanacearum/metabolismo , Solanum/imunologia , Solanum/microbiologia , Agrobacterium/fisiologia , Mutação/genética , Folhas de Planta/microbiologia , Estabilidade Proteica , Ralstonia solanacearum/crescimento & desenvolvimento
16.
Plant Cell Rep ; 32(8): 1231-41, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23525760

RESUMO

KEY MESSAGE: Phytophthora infestans resistant somatic hybrids of S. × michoacanum (+) S. tuberosum and autofused 4 x S. × michoacanum were obtained. Our material is promising to introgress resistance from S. × michoacanum into cultivated potato background. Solanum × michoacanum (Bitter.) Rydb. (mch) is a wild diploid (2n = 2x = 24) potato species derived from spontaneous cross of S. bulbocastanum and S. pinnatisectum. This hybrid is a 1 EBN (endosperm balance number) species and can cross effectively only with other 1 EBN species. Plants of mch are resistant to Phytophthora infestans (Mont) de Bary. To introgress late blight resistance genes from mch into S. tuberosum (tbr), genepool somatic hybridization between mch and susceptible diploid potato clones (2n = 2x = 24) or potato cultivar Rywal (2n = 4x = 48) was performed. In total 18,775 calli were obtained from postfusion products from which 1,482 formed shoots. The Simple Sequence Repeat (SSR), Cleaved Amplified Polymorphic Sequences (CAPS) and Random Amplified Polymorphic DNA (RAPD) analyses confirmed hybrid nature of 228 plants and 116 autofused 4x mch. After evaluation of morphological features, flowering, pollen stainability, tuberization and ploidy level, 118 somatic hybrids and 116 autofused 4x mch were tested for late blight resistance using the detached leaf assay. After two seasons of testing three somatic hybrids and 109 4x mch were resistant. Resistant forms have adequate pollen stainability for use in crossing programme and are a promising material useful for introgression resistance from mch into the cultivated potato background.


Assuntos
Cruzamento , Resistência à Doença/genética , Hibridização Genética , Phytophthora infestans/fisiologia , Doenças das Plantas/imunologia , Solanum tuberosum/genética , Solanum/genética , Cruzamentos Genéticos , Marcadores Genéticos , Fusão de Membrana , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Tubérculos/genética , Tubérculos/imunologia , Tubérculos/microbiologia , Protoplastos/metabolismo , Regeneração , Solanum/imunologia , Solanum/microbiologia , Solanum tuberosum/imunologia , Solanum tuberosum/microbiologia
17.
Plant Cell ; 24(8): 3420-34, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22885736

RESUMO

Plant pathogens secrete effector proteins to modulate plant immunity and promote host colonization. Plant nucleotide binding leucine-rich repeat (NB-LRR) immunoreceptors recognize specific pathogen effectors directly or indirectly. Little is known about how NB-LRR proteins recognize effectors of filamentous plant pathogens, such as Phytophthora infestans. AVR2 belongs to a family of 13 sequence-divergent P. infestans RXLR effectors that are differentially recognized by members of the R2 NB-LRR family in Solanum demissum. We report that the putative plant phosphatase BSU-LIKE PROTEIN1 (BSL1) is required for R2-mediated perception of AVR2 and resistance to P. infestans. AVR2 associates with BSL1 and mediates the interaction of BSL1 with R2 in planta, possibly through the formation of a ternary complex. Strains of P. infestans that are virulent on R2 potatoes express an unrecognized form, Avr2-like (referred to as A2l). A2L can still interact with BSL1 but does not promote the association of BSL1 with R2. Our findings show that recognition of the P. infestans AVR2 effector by the NB-LRR protein R2 requires the putative phosphatase BSL1. This reveals that, similar to effectors of phytopathogenic bacteria, recognition of filamentous pathogen effectors can be mediated via a host protein that interacts with both the effector and the NB-LRR immunoreceptor.


Assuntos
Resistência à Doença , Monoéster Fosfórico Hidrolases/metabolismo , Phytophthora infestans/patogenicidade , Imunidade Vegetal , Proteínas de Plantas/metabolismo , Solanum/microbiologia , Sequência de Aminoácidos , Membrana Celular/metabolismo , Interações Hospedeiro-Patógeno , Imunoprecipitação , Proteínas de Repetições Ricas em Leucina , Dados de Sequência Molecular , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/imunologia , Phytophthora infestans/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Plasmídeos/genética , Plasmídeos/metabolismo , Mapeamento de Interação de Proteínas , Estabilidade Proteica , Proteínas/genética , Proteínas/imunologia , Proteínas/metabolismo , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Solanum/enzimologia , Solanum/imunologia , Especificidade por Substrato , Técnicas do Sistema de Duplo-Híbrido
18.
Mol Plant Microbe Interact ; 25(5): 603-12, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22352721

RESUMO

Cross-species comparative genomics approaches have been employed to map and clone many important disease resistance (R) genes from Solanum species-especially wild relatives of potato and tomato. These efforts will increase with the recent release of potato genome sequence and the impending release of tomato genome sequence. Most R genes belong to the prominent nucleotide binding site-leucine rich repeat (NBS-LRR) class and conserved NBS-LRR protein motifs enable survey of the R gene space of a plant genome by generation of resistance gene analogs (RGA), polymerase chain reaction fragments derived from R genes. We generated a collection of 97 RGA from the disease-resistant wild potato S. bulbocastanum, complementing smaller collections from other Solanum species. To further comparative genomics approaches, we combined all known Solanum RGA and cloned solanaceous NBS-LRR gene sequences, nearly 800 sequences in total, into a single meta-analysis. We defined R gene diversity bins that reflect both evolutionary relationships and DNA cross-hybridization results. The resulting framework is amendable and expandable, providing the research community with a common vocabulary for present and future study of R gene lineages. Through a series of sequence and hybridization experiments, we demonstrate that all tested R gene lineages are of ancient origin, are shared between Solanum species, and can be successfully accessed via comparative genomics approaches.


Assuntos
Hibridização Genômica Comparativa , Resistência à Doença/genética , Genoma de Planta/genética , Doenças das Plantas/imunologia , Solanum/genética , Motivos de Aminoácidos , Sequência de Bases , Evolução Molecular , Genes de Plantas/genética , Genômica , Proteínas de Repetições Ricas em Leucina , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas/genética , Análise de Sequência de DNA , Solanum/imunologia , Solanum tuberosum/genética , Solanum tuberosum/imunologia , Especificidade da Espécie
19.
Transgenic Res ; 21(5): 929-38, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22146867

RESUMO

Potato virus Y (PVY) is the most important viral pathogen of cultivated potato (Solanum tuberosum) from a commercial perspective, causing severe losses in both tuber quality and yield worldwide. Specific accessions of wild potato species exhibit resistance against PVY but efforts to transfer the trait to cultivated material have not yielded widely adopted varieties. Because amino acid substitutions at specific domains of host factor eIF4E-1 often confer resistance to various crops, we sequenced the associated genes expressed in wild potato plants. A novel eIF4E-1 variant, designated here as Eva1, was identified in S. chacoense, S. demissum, and S. etuberosum. The protein contains amino acid substitutions at ten different positions when compared to its cultivated potato (S. tuberosum) homolog. In the yeast two-hybrid system, Eva1 failed to bind VPg, a viral protein required for infectivity. Overexpression of the associated cDNA conferred PVY resistance to transgenic potato plants silenced for the native eIF4E-1 gene. Because the gene sources of Eva1 are sexually compatible with potato, the molecular strategies described can be employed to develop 'intragenic' potato cultivars.


Assuntos
Resistência à Doença , Fator de Iniciação 4E em Eucariotos/metabolismo , Inativação Gênica , Proteínas de Plantas/metabolismo , Potyvirus/patogenicidade , Solanum/imunologia , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Capsicum/genética , Capsicum/metabolismo , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Regulação da Expressão Gênica de Plantas , Genótipo , Dados de Sequência Molecular , Mutação , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/virologia , Potyvirus/imunologia , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Solanum/genética , Solanum/metabolismo , Solanum/virologia , Transformação Genética , Técnicas do Sistema de Duplo-Híbrido , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
20.
BMC Plant Biol ; 11: 116, 2011 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-21851635

RESUMO

BACKGROUND: The cultivated potato (Solanum tuberosum L.) is an important food crop, but highly susceptible to many pathogens. The major threat to potato production is the Irish famine pathogen Phytophthora infestans, which causes the devastating late blight disease. Potato breeding makes use of germplasm from wild relatives (wild germplasm) to introduce resistances into cultivated potato. The Solanum section Petota comprises tuber-bearing species that are potential donors of new disease resistance genes. The aim of this study was to explore Solanum section Petota for resistance genes and generate a widely accessible resource that is useful for studying and implementing disease resistance in potato. DESCRIPTION: The SolRgene database contains data on resistance to P. infestans and presence of R genes and R gene homologues in Solanum section Petota. We have explored Solanum section Petota for resistance to late blight in high throughput disease tests under various laboratory conditions and in field trials. From resistant wild germplasm, segregating populations were generated and assessed for the presence of resistance genes. All these data have been entered into the SolRgene database. To facilitate genetic and resistance gene evolution studies, phylogenetic data of the entire SolRgene collection are included, as well as a tool for generating phylogenetic trees of selected groups of germplasm. Data from resistance gene allele-mining studies are incorporated, which enables detection of R gene homologs in related germplasm. Using these resources, various resistance genes have been detected and some of these have been cloned, whereas others are in the cloning pipeline. All this information is stored in the online SolRgene database, which allows users to query resistance data, sequences, passport data of the accessions, and phylogenic classifications. CONCLUSION: Solanum section Petota forms the basis of the SolRgene database, which contains a collection of resistance data of an unprecedented size and precision. Complemented with R gene sequence data and phylogenetic tools, SolRgene can be considered the primary resource for information on R genes from potato and wild tuber-bearing relatives.


Assuntos
Bases de Dados Genéticas , Resistência à Doença/genética , Genes de Plantas , Solanum/genética , Sequência de Bases , Evolução Biológica , Produtos Agrícolas/genética , Produtos Agrícolas/imunologia , Resistência à Doença/imunologia , Dados de Sequência Molecular , Filogenia , Phytophthora infestans/imunologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Solanum/imunologia , Solanum tuberosum/genética , Solanum tuberosum/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...